Search results for "VAPOR INTERFACE"

showing 2 items of 2 documents

Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures

2010

Monte Carlo simulations at constant pressure are performed to study coexistence and interfacial properties of the liquid-solid transition in hard spheres and in colloid-polymer mixtures. The latter system is described as a one-component Asakura-Oosawa (AO) model where the polymer's degrees of freedom are incorporated via an attractive part in the effective potential for the colloid-colloid interactions. For the considered AO model, the polymer reservoir packing fraction is eta_p^r=0.1 and the colloid-polymer size ratio is q=sigma_p/\sigma=0.15 (with sigma_p and sigma the diameter of polymers and colloids, respectively). Inhomogeneous solid-liquid systems are prepared by placing the solid fc…

ANISOTROPIC SURFACE-TENSIONMaterials scienceMonte Carlo methodDegrees of freedom (physics and chemistry)General Physics and AstronomyThermodynamicsCondensed Matter - Soft Condensed MatterCAPILLARY WAVESAtomic packing factorCOMPUTER-SIMULATIONVAPOR INTERFACE3-DIMENSIONAL ISING-MODELColloidsymbols.namesakePhase (matter)Physical and Theoretical ChemistryCOEXISTING PHASESchemistry.chemical_classificationCondensed Matter - Materials ScienceINTERFACIAL FREE-ENERGYPROFILESHard spheresPolymerCondensed Matter::Soft Condensed MatterchemistryCRYSTAL-MELT INTERFACESBoltzmann constantsymbolsCRYSTALLIZATIONThe Journal of Chemical Physics
researchProduct

Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid–Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulat…

2013

International audience; The vibrational sum frequency generation (VSFG) spectrum of the water liquid-vapor (LV) interface is calculated using density functional theory-based molecular dynamics simulations. The real and imaginary parts of the spectrum are in good agreement with the experimental data, and we provide an assignment of the SFG bands according to the dipole orientation of the interfacial water molecules. We use an instantaneous definition of the surface, which is more adapted to the study of interfacial phenomena than the Gibbs dividing surface. By calculating the vibrational (infrared, Raman) properties for interfaces of varying thickness, we show that the bulk spectra signature…

InfraredBulk spectra02 engineering and technologyMolecular dynamicsVibrational sum-frequency generations010402 general chemistry01 natural sciencesMolecular physicsSpectral lineInterfacial phenomenaLiquid-vapor interfaceMolecular dynamicssymbols.namesakeDipole orientationComputational chemistryGeneral Materials SciencePhysical and Theoretical ChemistryDividing surfacesDensity functionalsSum-frequency generationMolecular dynamics simulationsChemistryInterfacial water moleculesThin layers021001 nanoscience & nanotechnologyLiquid-vapor0104 chemical sciencesDipoleImaginary partsDensity functional theoryVaporssymbolsDensity functional theory[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyRaman spectroscopyVarying thicknessSum frequency generation spectroscopyThe Journal of Physical Chemistry Letters
researchProduct